To find find a rational between root2 and root3 we need to be clear about the definition of Rational number
What is a rational number?
A rational number is a number that can be expressed in the form of x/y, where y must not be 0. (x and y being integer)
Let us understand with explanation.
Explanation:
If we divide a rational number we get a number in either repeating decimals or terminating decimals.
On expressing √2 in decimals we get non-recurring and non-terminating decimals as √2 is an irrational number.
Similarly, on expressing √3 in decimals we get non-recurring and non-terminating decimals as √3 is an irrational number.
√2 = 1.414 (rounded to 3 decimal places) and √3 = 1.732 (rounded to 3 decimal places).
Below are the 3 decimal places rounded numbers in between 1.414 and 1.732
1.414 |
1.415 |
1.416 |
1.417 |
1.418 |
1.419 |
1.42 |
1.421 |
1.422 |
1.423 |
1.424 |
1.425 |
1.426 |
1.427 |
1.428 |
1.429 |
1.43 |
1.431 |
1.432 |
1.433 |
1.434 |
1.435 |
1.436 |
1.437 |
1.438 |
1.439 |
1.44 |
1.441 |
1.442 |
1.443 |
1.444 |
1.445 |
1.446 |
1.447 |
1.448 |
1.449 |
1.45 |
1.451 |
1.452 |
1.453 |
1.454 |
1.455 |
1.456 |
1.457 |
1.458 |
1.459 |
1.46 |
1.461 |
1.462 |
1.463 |
1.464 |
1.465 |
1.466 |
1.467 |
1.468 |
1.469 |
1.47 |
1.471 |
1.472 |
1.473 |
1.474 |
1.475 |
1.476 |
1.477 |
1.478 |
1.479 |
1.48 |
1.481 |
1.482 |
1.483 |
1.484 |
1.485 |
1.486 |
1.487 |
1.488 |
1.489 |
1.49 |
1.491 |
1.492 |
1.493 |
1.494 |
1.495 |
1.496 |
1.497 |
1.498 |
1.499 |
1.5 |
1.501 |
1.502 |
1.503 |
1.504 |
1.505 |
1.506 |
1.507 |
1.508 |
1.509 |
1.51 |
1.511 |
1.512 |
1.513 |
1.514 |
1.515 |
1.516 |
1.517 |
1.518 |
1.519 |
1.52 |
1.521 |
1.522 |
1.523 |
1.524 |
1.525 |
1.526 |
1.527 |
1.528 |
1.529 |
1.53 |
1.531 |
1.532 |
1.533 |
1.534 |
1.535 |
1.536 |
1.537 |
1.538 |
1.539 |
1.54 |
1.541 |
1.542 |
1.543 |
1.544 |
1.545 |
1.546 |
1.547 |
1.548 |
1.549 |
1.55 |
1.551 |
1.552 |
1.553 |
1.554 |
1.555 |
1.556 |
1.557 |
1.558 |
1.559 |
1.56 |
1.561 |
1.562 |
1.563 |
1.564 |
1.565 |
1.566 |
1.567 |
1.568 |
1.569 |
1.57 |
1.571 |
1.572 |
1.573 |
1.574 |
1.575 |
1.576 |
1.577 |
1.578 |
1.579 |
1.58 |
1.581 |
1.582 |
1.583 |
1.584 |
1.585 |
1.586 |
1.587 |
1.588 |
1.589 |
1.59 |
1.591 |
1.592 |
1.593 |
1.594 |
1.595 |
1.596 |
1.597 |
1.598 |
1.599 |
1.6 |
1.601 |
1.602 |
1.603 |
1.604 |
1.605 |
1.606 |
1.607 |
1.608 |
1.609 |
1.61 |
1.611 |
1.612 |
1.613 |
1.614 |
1.615 |
1.616 |
1.617 |
1.618 |
1.619 |
1.62 |
1.621 |
1.622 |
1.623 |
1.624 |
1.625 |
1.626 |
1.627 |
1.628 |
1.629 |
1.63 |
1.631 |
1.632 |
1.633 |
1.634 |
1.635 |
1.636 |
1.637 |
1.638 |
1.639 |
1.64 |
1.641 |
1.642 |
1.643 |
1.644 |
1.645 |
1.646 |
1.647 |
1.648 |
1.649 |
1.65 |
1.651 |
1.652 |
1.653 |
1.654 |
1.655 |
1.656 |
1.657 |
1.658 |
1.659 |
1.66 |
1.661 |
1.662 |
1.663 |
1.664 |
1.665 |
1.666 |
1.667 |
1.668 |
1.669 |
1.67 |
1.671 |
1.672 |
1.673 |
1.674 |
1.675 |
1.676 |
1.677 |
1.678 |
1.679 |
1.68 |
1.681 |
1.682 |
1.683 |
1.684 |
1.685 |
1.686 |
1.687 |
1.688 |
1.689 |
1.69 |
1.691 |
1.692 |
1.693 |
1.694 |
1.695 |
1.696 |
1.697 |
1.698 |
1.699 |
1.7 |
1.701 |
1.702 |
1.703 |
1.704 |
1.705 |
1.706 |
1.707 |
1.708 |
1.709 |
1.71 |
1.711 |
1.712 |
1.713 |
1.714 |
1.715 |
1.716 |
1.717 |
1.718 |
1.719 |
1.72 |
1.721 |
1.722 |
1.723 |
1.724 |
1.725 |
1.726 |
1.727 |
1.728 |
1.729 |
1.73 |
1.731 |
1.732 |
This shows that there are many rational numbers between √2 and √3, for example, 1.5
Thus, a rational number between √2 and √3 is 1.5
So for the question
Find a rational between root2 and root3 (√2and√3) ?
Answer is 1.5
Table of Contents